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Consideration is given to a new quasistatic contact thermoelasticity problem for an elastic layer fixed at its
base and on whose surface a rigid heat-insulated die moves, when the interaction of the bodies is accompa-
nied by the heat generation from the action of friction forces. Under the assumption that the process of heat
generation is nonstationary, the problem has been reduced to an integral equation with integration limits
varying with time. It has been shown that an increase in the heat-generation intensity produces a decrease in
the upsetting of the die and equilibrium is possible for its negative values with decrease in the contact por-
tion; for a die with a plane base this is equivalent to the separation of the body from the layer at the edges
of the interaction interval.

Quasistationary heat generation on the portion of contact of two elastic bodies in a plane formulation was
considered for the first time in [1, 2], and the motion of a die over the surface of an elastic half-plane in quasistation-
ary heat release was considered in [3, 4]. In the last work, the critical value of the velocity of motion in thermal ex-
plosion or under a sharp change (bifurcation) in the contact temperatures was found.

Plane contact problems in nonstationary heat generation caused by the motion of a die over the surface of an
elastic half-plane were investigated in [5, 6]. It has been shown that a monotone variation in the contact portion with
time is one principal effect accompanying the nonstationary heat generation in contact with friction. If the stationary
value of the half-width of the contact portion is close to the critical value, the region of contact, upon reaching this
value, will be multiply connected with contact zones and a detachment [7].

Thermoelastic contact problems with allowance for nonstationary frictional heat generation were investigated
earlier either for bodies modeled by an elastic half-space or for a thick layer, when the first term of the asymptotics
of the regular part of the kernels of integral equations was selected ("method of large λ" [8, 9]). Below, we construct
the exact solution for a layer whose contact surface beyond the interaction region is heat-insulated, which enables us
to reduce the problem formulated to one integral equation with integration limits varying with time.

Formulation of the Problem. Let a rigid bar die be pressed by the force P(τ) referred to a unit length and
applied with an eccentricity ε to an elastic layer of thickness h, which is rigidly fixed at the base (Fig. 1). The region
of the initial contact Ω0 between the die and the layer is described by the inequalities −b ≤ x ≤ a and z < ∞, whereas
the shape of the body’s base in the contact region is determined by the function y = f0(x). We assume that the die
moves over the layer surface with a low velocity v(τ) in the direction of the z axis. Due to the action of the friction
forces τyz which occur on the contacting surfaces and obey the Amonton law (τyz = fσy), we have heat generation in
the contact plane; as a consequence of the heat insulation of the die, the entire heat generated on the contact is di-
rected into the layer, causing its heating, which is responsible for the swelling of the body’s contacting surface and
consequently for the time variation in the boundary of the portion of interaction near the die’s edge. Heat exchange
following the Newton law occurs between the lower plane of the layer and the ambient medium, whose temperature
is taken to be zero; the upper plane beyond the interaction portion is assumed to be heat-insulated.

Under the above assumptions realizing plane deformation in the layer, the problem is reduced to construction
of the solutions of the system involving the differential equations of heat conduction

∆T = k
−1∂τT (1)
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and thermal elasticity

(1 − 2ν) ∆ux + ∂x (∂xux + ∂yuy) = 2α (1 + ν) ∂xT ,

(1 − 2ν) ∆uy + ∂y (∂xux + ∂yuy) = 2α (1 + ν) ∂yT , (2)

which satisfy the initial

T (x, y, 0) = 0 ,   c (0) = b ,   d (0) = a , (3)

boundary and contact conditions

y = − h :   1) ∂yT = γT ,   2) ux = 0 ,   3) uy = 0 , (4)

y = 0 :   − c (τ) ≤ x ≤ d (τ) :

1) ∂yT = fv (τ) λ−1
p (x, τ) ,   2) uy = − δ0 (τ) − α0 (τ) x + f0 (x) ,   3) τyx = 0 ; (5)

x < − c (τ) ,   x > d (τ) :   ∂yT = 0 ,   σy = 0 ,   τyx = 0 . (6)

The stresses are determined from the formulas

σx = 
E (1 − ν)

(1 + ν) (1 − 2ν)
 



∂xux + 

ν
1 − ν

 ∂yuy − α 
1 + ν
1 − ν

 T



 ,

σy = 
E (1 − ν)

(1 + ν) (1 − 2ν)
 



∂yuy + 

ν
1 − ν

 ∂xux − α 
1 + ν
1 − ν

 T



 ,   τxy = 

E
2 (1 + ν)

 (∂yux + ∂xuy) .
(7)

Furthermore, the equilibrium conditions

  ∫ 
−c(τ)

d(τ)

 p (x, τ) dx = P (τ) ,   ∫ 
−c(τ)

d(τ)

 xp (x, τ) dx = εP (τ) (8)

and, upon reaching the steady-state regime, the condition of thermal balance must hold

 lim
τ→∞

  ∫ 
−∞

∞

∂yT (x, 0, τ) dx = γ lim
τ→∞

  ∫ 
−∞

∞

T (x, − h, τ) dx .

Fig. 1. Scheme of the problem of contact interaction between a rigid die and
an elastic layer.
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Solution of the Problem. The use of the integral transformations of Fourier in the coordinate x and Laplace
in τ [10] in solving thermoelasticity problem (1)–(7) enables us to obtain the integral transforms for the temperature,
displacements, and stresses of the layer in terms of the unknown function of the contact pressure p(x, τ); this func-
tion is determined by solution of the integral equation which is given here in dimensionless form. Referring the lin-
ear dimensions of the body to the layer thickness h, the stresses to the quantity P0

 ⁄ h, and the temperature to αEh/
(2P0(1 − ν)), consequently we have

1
π

 c0 (Fo) ∫ 
−1

1

p (t, Fo) ∆ (c0 (Fo) (t − x)) dt − 
χ
π

 ∂Fo ∫ 
0

Fo

c0 (η) v∗ (η) ∫ 
−1

1

p (t, η) H (c0 (η) t +

+ c+ (η) − c0 (Fo) x − c+ (Fo),  Fo − η) dtdη =

= δ∗ (Fo) + α∗ (Fo) (c0 (Fo) x + c+ (Fo)) − f∗ (c0 (Fo) x + c+ (Fo)) ,  (x ≤ 1) . (9)

This equation together with the conditions of equilibrium of the die

c0 (Fo) ∫ 
−1

1

p (x, Fo) dx = P∗ (Fo) ,   c0
2
 (Fo) ∫ 

−1

1

xp (x, Fo) dx = P∗ (Fo) (ε − c+ (Fo)) (10)

and the conditions of boundedness of contact stresses (unknown contact region)

p (%1) = 0 (11)

yield the complete system of equations of the problem formulated. For the layer temperature, we obtain the integral
transform

T (x, y, Fo) = 
χ
π

 ∂Fo ∫ 
0

Fo

c0 (η) v∗ (η) ∫ 
−1

1

p (t, η) Φ (c0 (η) t + c+ (η) − c0 (Fo) x − c+ (Fo), y, Fo − η) dtdη .

Here we have

∆ (x) = ∫ 
0

∞

∆
__

 (ξ) cos (ξx) dξ ;   ∆
__

 (ξ) = ξ−1
 

(3 − 4ν) cosh (ξ) sinh (ξ) − ξ

ξ2
 − (1 − 2ν)2 sinh

2
 (ξ) + 4 (1 − ν)2 cosh

2
 (ξ)

 ;

Φ (x, y, Fo) = ∫ 
0

∞

Φ
__

st (ξ, y) cos (ξx) dξ − 
π
2

 ∑ 

m=1

∞

 
cos (µmy)

µm (1 + Bi (µm
2

 + Bi
2)−1)

 ×

× ∑ 

k=1

2

exp ((− 1)k µmx) erfc 

µm √Fo  + (− 1)k x

2 √Fo



 ;

Φ
__

st (ξ, y) = ξ−1
 
ξ cosh (ξ (1 + y)) + Bi sinh  (ξ (1 + y))

ξ sinh (ξ) + Bi cosh (ξ)
 ,   H (x, Fo) = ∫ 

0

∞

H
__

 (ξ, Fo) cos (ξx) dξ ;

H
__

 (ξ, Fo) = H
__

st (ξ) + 4 
2 (1 − ν) (ξ sinh (ξ) − Bi cosh (ξ)) − ξ (sinh (ξ) + ξ cosh (ξ) + Bi sinh (ξ))

ξ2
 − (1 − 2ν)2 sinh

2
 (ξ) + 4 (1 − ν)2 cosh

2
 (ξ)

 ×
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× ∑ 

m=1

∞
1

(µm
2

 + ξ2)2
 
cos (µm) exp (− (ξ2

 + µm
2 ) Fo)

1 + Bi (µm
2

 + Bi
2)−1

 + 4 
ξ2

 − (3 − 4ν) ξ sinh (ξ) cosh (ξ)

ξ2
 − (1 − 2ν)2 sinh

2
 (ξ) + 4 (1 − ν)2 cosh

2
 (ξ)

 ×

× ∑ 

m=1

∞
1

(µm
2

 + ξ2)2
 
exp (− (ξ2

 + µm
2 ) Fo)

1 + Bi (µm
2

 + Bi
2)−1

 ;

H
__

st (ξ) = 
1

ξ2 
(ξ2

 + (3 − 4ν) sinh
2
 (ξ)) (ξ sinh (ξ) + Bi cosh (ξ)) + 2 (1 − ν) ξ (ξ cosh (ξ) − Bi sinh (ξ) + sinh (ξ))

(ξ cosh (ξ) + Bi cosh (ξ)) (ξ2
 − (1 − 2ν)2 sinh

2
 (ξ) + 4 (1 − ν)2 cosh

2
 (ξ))

 ;

χ = 
αEhfv0

2λ (1 − ν)
 ;   δ∗ = 

δ0E

2P0 (1 − ν2)
 ;   α∗ = 

α0Eh

2P0 (1 − ν2)
 ;

f∗ = 
f0E

2P0 (1 − ν2)
 ;   c0 (Fo) = (d (Fo) + c (Fo)) ⁄ (2h) ;

c+ (Fo) = (d (Fo) − c (Fo)) ⁄ (2h) ;   v (τ) = v0v∗ (Fo) ;

µm sin (µm) − Bi cos (µm) = 0 ;   − 1 ≤ y ≤ 0 .

Into the formulas given above, we have not introduced new variables for the coordinates x, y and eccentricity
ε referred to the layer thickness h and for the contact-pressure function p(x, Fo) referred to the combination of the pa-
rameters P0

 ⁄ h. The unknown boundaries of the contact region c0(Fo) and c+(Fo) are obtained from the condition of
boundedness of contact stresses p(%1, Fo) = 0; this condition is used only for such a state of the tribosystem when a
change in the p sign is observed at the ends of the interval x 2 [−1, 1]. Otherwise, we will have c0(Fo) = (a + b)/(2h)
and c+(Fo) = (a − b)/(2h).

Based on the trapezium method [11], we carry out time discretization of the integral equation (9) with condi-
tions (10) and (11) in the time interval [0, Fo∗] in which the behavior of the tribosystem is investigated (this interval
is subdivided into N time intervals Fok = kFo1 (k = 0, ..., N), where FoN = Fo∗). Then, at each instant of time Fok,
we obtain the integral equation

1
π

 c0 (Fok) ∫ 
−1

1

p (t, Fok) (∆ (c0 (Fok) (t − x)) − 0.5χv∗ (Fok) H (c0 (Fok) (t − x), Fo1)) dt =

= δ∗ (Fok) + α∗ (Fok) (c0 (Fok) x + c+ (Fok)) − f∗ (c0 (Fok) x + c+ (Fok)) + 
χ
π

 R ′ (x, Fok) ,   x ≤ 1 (12)

with the conditions

p (%1) = 0 ,   c0 (Fok) ∫ 
−1

1

p (x, Fok) dx = P∗ (Fok) ,   c0
2
 (Fok) ∫ 

−1

1

xp (x, Fok) dx = P∗ (Fok) (ε − c∗ (Fok)) ,

where

R ′ (x, 0) = 0 ;   R ′ (x, Fo1) = 0.25G1
 ′ (x, Fo0,2) ;

R ′ (x, Fo2) = 0.5G2
 ′ (x, Fo1,2) + 0.25 (G2

 ′ (x, Fo0,3) − G2
 ′ (x, Fo0,1)) ;
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R ′ (x, Fon) = 0.5Gn
 ′ (x, Fon−1,2) + 0.5 ∑ 

k=1

n−2

(Gn
 ′ (x, Fok,n+1−k) − Gn

 ′ (x, Fok,n−1−k)) +

+ 0.25 (Gn
 ′ (x, Fo0,n+1) − Gn

 ′ (x, Fo0,n−1)) ,   n ≥ 3 ;

Gm
 ′  (x, Foi,j) = v∗ (Foi) c0 (Foi) ∫ 

−1

1

p (t, Foi) H (c0 (Foi) t + c+ (Foi) − c0 (Fom) x − c+ (Fom), Foj) dt .

In solving (12), we will use the Multhopp–Kalandiya methods [12] and the theorems given in [8, 9].
As a result of any asymptotic analysis of the kernels of the integral equations with allowance for the relation

from [8, 9], we may state that the kernels H(x, Fo) and Φ(x, y, Fo) will be regular for y ≠ 0 and Fo > 0, whereas the
kernels ∆(x) and Φ(x, 0, Fo) (Fo > 0) have a logarithmic singularity. Then we represent the contact pressure as

p (x, Fok) = 
ψ (x, Fok)

√1 − x2
 , (13)

where ψ(x, Fok) is the continuously differentiable and bounded function for which we select representation in the form
of the interpolation Lagrange polynomial of the nth degree [13] in the Chebyshev polynomials of the first kind Tm(x):

ψ (x, Fok) = 
1
n

 ∑ 

i=1

n

ψ (xi, Fok) 






1 + 2 ∑ 

m=1

n−1

Tm (xi) Tm (x)






 , (14)

where xi = cos 




2i − 1
2n

 π



 (i = 1, ..., n) are the zeros of the Chebyshev polynomial of the first kind of order n [14].

Substituting the expression for contact pressure (13) into the integral equation (12), we accurately compute the
integrals with logarithms from the known formulas and approximately find the values of the regular integrals from the
Gauss formulas [11]. Then we reduce Eq. (12) at each instant of time Fok to a system of linear equations for the ex-
pansion coefficients in the interpolation polynomial that totally determine the change in the contact pressure at this in-
stant of time.

Prescribing the boundaries of contact c0(Fok) and c+(Fok) and the value of the eccentricity ε, we select such
values of the parameters δ∗(Fok) and α∗(Fok) that the contact pressure satisfies the integral equilibrium relations. The
conditions ψ(−1, Fok) > 0 and ψ(1, Fok) > 0 must hold. Violation of one condition for +1 or −1 is equivalent to the
separation of the die base at this edge. Then, selecting the boundaries of the contact region, we strive for the fulfill-
ment of the approximate relations following from the numerical approach to solution of the system 


ψ(−1, Fok)

 < ε0
or 


ψ(1, Fok)

 < ε0, where ε0 is a certain number determining the computational error (ε0 C 10−5, as a rule). Based on
[9], the fulfillment of the last two conditions is equivalent to the fact that

p (x, Fok) = ψ1 (x, Fok) √1 + x

1 − x
 ,   if   ψ (− 1, Fok) = 0    or

p (x, Fok) = ψ2 (x, Fok) √1 − x2  ,   if   ψ (%  1, Fok) = 0 ,

(15)

where ψ1(x, Fok) and ψ2(x, Fok) are the continuously differentiable and bounded functions for which the interpolation
Lagrange polynomials of the nth degree [13]

ψ1 (x, Fok) = 
2

2n + 1
 ∑ 

i=1

n

ψ1 (xi, Fok) (1 + xi) 






1 + ∑ 

m=1

n−1

(Um (xi) − Um−1 (xi)) 
Tm (x) + Tm+1 (x)

1 + x







 ,
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ψ2 (x, Fok) = 
2

n+1
 ∑ 

i=1

n

ψ2 (xi, Fok) (1 − xi
2) 






1 + ∑ 

m=1

n−1

Um (xi) Um (x)







are constructed, analogously to (14), from the polynomials

Rn (x) = 
Tn (x) + Tn+1 (x)

1 + x
     




xi = cos 





2i − 1

2n + 1
 π



 ,   i = 1, ..., n





or

Rn (x) = Un (x)     

xi = cos 



i
n + 1

 π

 ,   i = 1, ..., n


 .

The use of formulas (15) with interpolation Lagrange polynomials in polynomials Rn(x) makes it possible to
determine the actual distribution of the contact pressure for the found values of δ∗(Fok), α∗(Fok), c0(Fok), and c+(Fok)
once the procedure described above has been used. The subdivision time step Fo1 = 0.05 and the degree of the inter-
polation Lagrange polynomials n = 21 will suffice for calculations. Then the relative computational error is no higher
than 5%.

Analysis of the Results. Investigation of the stationary thermoelastic contact of the die with a plane base
(f∗(x) = 0 and ε = 0) enables us to state that:

(a) if χ = 0 (force problem), the contact pressure has a root singularity for an arbitrary value of the half-
width of the die’s base c0, and the upsetting of the die is δ∗ > 0 for a positive value of the pressing force;

(b) in the thermoelastic problem, an increase in the heat-generation intensity χ for a fixed value of c0 pro-
duces a decrease in the upsetting; there comes a time where the equilibrium of the die occurs for negative values of
δ∗. The contact pressure preserves its root singularity (with a coefficient of the singularity smaller than that in elastic
interaction) only on condition that c0 < cef. When c0 ≥ cef the die contacts the layer along the segment [−cef, cef], i.e.,
the separation of the die from the base is observed at the edge of the contact interval. The increase in χ is responsible
for the decrease in cef, and, when the value of χ is fixed, a growth in the pressing force produces an increase in
δ∗ without influencing the value of the boundaries of the contact interval. These conclusions are illustrated in Figs.
2 and 3, which give the distribution of the contact pressure and the displacements of the contact-layer surface.

Fig. 2. Distribution of the contact pressure of the stationary problem for a die
with a plane base (ν = 0.3, Bi = 2.0, P = 1, ε = 0, and c+ = 0): a) χ = 0.5
(1), 1.0 (2), 1.298 (3), 1.5 (4), and 2.0 (5) (c0 = 1); b) c0 = 0.25 (1), 0.5 (2),
0.75 (3), 1.0 (4), and 1.2947 (5) (χ = 1); a) the dashed curve corresponds to
the contact pressure of the force problem, b) vertical dashed curves show the
asymptotes of contact pressure, which bound the size of the interaction portion.
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Further numerical investigations have shown that the quantity cef coincides with the critical half-width of the
contact portion ccr [7], which can be obtained by pressing a die with a parabolic base (variable contact) by an infinite
force. In particular, unlike the force problem where a maximum possible value of the contact portion can be obtained
in forcing-in a parabolic die, in the case of a thermoelastic problem we have such a value of c0(χ) for each χ value
that the straight line c0 = ccr is a vertical asymptote for the plot of the function P = P0 (c0, χ) (Fig. 4).

The conditions of change of the sign of the upsetting δ∗ is insufficient for the die with a plane base to sepa-
rate from the layer surface. If the half-width of the die’s base c0 is smaller than the critical value, the die interacts
with the layer throughout its base, which points to the insufficient level of heat generation whose value is dependent
on both the value of the parameter χ and the size of the contact portion c0. The condition δ∗ > 0 points to the fact
that, for these values of χ and c0, force deformations dominate over thermal ones, whereas the opposite condition
demonstrates the predominance of thermal deformations. The swelling of the contact layer surface due to the force and
thermal factors is local in character: we may disregard it even approximately at a distance of 8c0.

The condition of symmetry of the kernel of the integral equation and the mechanism of separation of a body
on the critical value of the half-width do not allow the separation of a tilted die with a plane base from the layer sur-
face. This conclusion is explained as follows: if the die has separated without an eccentricity, the separation occurs for
critical values. It is impossible to calculate the problem for the tilted die in this case, since extension of the contact
zone beyond the critical value is required. Therefore, it is possible to investigate the contact interaction of the tilted
die with a plane base of length 2c0 only for c0 + ε ≤ ccr for the given value of the parameter χ. As a consequence, the
contact pressure will have a singularity at both ends

p (x, Fo) = 
ψ (x, Fo)

√1 − x2
   at   c0 + ε < ccr ,

or just at one end

p (x, Fo) = ψ1 (x, Fo) √1 + x

1 − x
   at   c0 + ε = ccr .

Numerical calculations show that the boundary eccentricity of application of the force P to a die of length
2c0, which causes one edge of the die to detach itself from the layer surface, is smaller than 0.5c0 in the case of
the elastic problem. An increase in the curvature of the die base or in the intensity of heat generation χ leads to a
decrease in this boundary value of ε (Figs. 5 and 6).

Fig. 3. Curves of displacement of the contact layer surface for c0 = 1, c+ = 0,
and χ = 0.25 (1), 0.5 (2), 1.0 (3), 1.298 (4), and 1.5 (5); dashed curve, dis-
placement of the surface y = 0 in the force problem.

Fig. 4. Pressing force P vs. half-width of the contact portion c0: χ = 1.0 (1)
and 2.0 (2); vertical dashed lines, asymptotes; dashed curve 3 prescribes the
dependence for P = P(c0) of the elastic problem.
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The character of distribution of the stationary temperature is largely determined by the character of distribu-
tion of the contact pressure (Fig. 7). Despite the fact that the surface y = 0 beyond the interaction portion is heat-in-
sulated, the temperature comparatively rapidly decreases. Furthermore, as the parameter Bi increases, the layer
temperature decreases with thickness.

Investigations of the solution of the problem in a quasistatic formulation have shown that the value of the
contact pressure monotonically becomes stationary. If the pressing force and the velocity of motion vary as

P∗ (Fo) = 1 ,   v∗ (Fo) = 1 − exp (− Fo) ,

the duration of the transient processes for the contact pressure (6Fo) is longer than the time of the velocity reaching
the stationary value (approximately 4.5Fo) (Fig. 8).

The temperature on the surface of interaction of the bodies (its level lines are given in Fig. 9) reaches the
stationary value (Fo C 7.5) somewhat more slowly, and the duration of the transient process becomes longer with dis-
tance from the surface y = 0, i.e., regions located closer to the heat-generation plane are heated somewhat more rap-
idly. Furthermore, the asymmetric distribution of the contact stress together with the asymmetry of the process of heat
generation is responsible for the asymmetry of the temperature distribution throughout the layer thickness.

Fig. 5. Distribution of the contact pressure of the elastic problem (ν = 0.3, P
= 1, c0 = 1, and c+ = 0) below the die with a plane (dashed curves: ε = 0 (1),
0.2 (2), and 0.4 (3)) and parabolic (f∗(x) = 0.1x2, solid curves: ε = 0 (1), 0.1
(2), and 0.2 (3)) base.

Fig. 6. Distribution of the contact pressure of the thermoelastic stationary prob-
lem under the die with a plane base (Bi = 2.0, ε = 0.1, and χ = 0.5 (1) and
1.0 (2)); the dashed curve corresponds to the value χ = 0.

Fig. 7. Curves of variation in the stationary temperature of the surface y = 0
along the x axis in forcing-in of the die with a plane base: a) χ = 0.5 (1), 1.0
(2), 1.5 (3), and 2.0 (4) (ε = 0); b) χ = 0.5 (1) and 1.0 (2) (ε = 0.1).

198



Thus, an analysis of the results obtained has shown that the basic characteristic of the behavior of the solution
of problems of this type is the parameter χ determining the intensity of heat generation. Based on what has been said
above, we may state:

1. If there is no stationary value of the pressing force or the velocity of displacement, contact stresses un-
boundedly increase with time.

Fig. 8. Contact-pressure distribution in nonstationary heat generation for certain
values of the dimensionless time Fo [1) 0, 2) 0.5, 3) 1.0, 4) 2.0, and 5) 4.0]:
a) χ = 2.0 and ε = 0, b) χ = 1.0 and ε = 0.1; the dashed curves correspond
to the pressure of the stationary problem.

Fig. 9. Layer-temperature-level lines for the conditions of Fig. 8, b: a–f corre-
spond to the following values of Fo: 0.5, 1.0, 2.0, 4.0, 6.0, and ∞ (stationary
solution).
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2. If the pressing force and the velocity of displacement reach their stationary values, the contact pressure, to-
gether with the stresses, displacement, and temperature, tends to the corresponding stationary values. If the value of the
half-width of the die with a plane base is lower than the critical value for a given χ, the contact stresses preserve their
singularity at the end points of the contact region. Otherwise, contact-pressure regularization due to the swelling of the
contact-layer surface is observed. Furthermore, an increase in the heat generation produces a monotone decrease in the
half-width of the contact region to the critical value.

3. The existence of the critical value of the half-width of the contact region makes the separation of a tilted
die from the layer surface impossible. Therefore, contact stresses will have a singularity either at both ends of the con-
tact interval or just at the end where the pressing force is applied with an eccentricity.

NOTATION

a and b, boundaries of the contact region at the initial instant of time, m; Bi, Biot number; c(τ) and d(τ),
time-varying boundaries of the interaction portion, m; cef, effective value of the contact interval; ccr, critical value
of the contact interval; c0(Fo) and c+(Fo), dimensionless boundaries of the interaction portion; E, Young modulus,
N/m2; erfc(z), error function; f, coefficient of friction; Fo, Fourier number; Fok, discrete value of time in numerical
solution of the integral equation; Fo∗, boundary of the time interval of investigation of the behavior of the tribosys-
tem; Gm

 ′ (x, Foi,j), values of the integral at the instant of time Foi, when the boundary of the contact region has
been determined at the instant Fom, and the integral is calculated for the instant of time Foj; h, layer thickness, m;
H(x, Fo), kernel of the integral equation; H

__
(ξ, Fo), Fourier transform of the kernel of the integral equation; H

__
st(ξ),

Fourier transform (corresponding to the stationary solution of the problem) of the kernel of the integral equation; k,
thermal diffusivity, m/sec2; P(τ), pressing force, N; P0, intensity of the pressing force, N; P∗(Fo), dimensionless
function of the pressing force; p(x, τ), contact pressure, N/m2; p(x, Fo), dimensionless function of contact pressure;
R ′(x, Fok), value of the sums of the right-hand side of the integral equation at the instant of time Fok; Rn(x), poly-
nomial of nth order, which is a combination of Chebyshev polynomials; t, integration variable; T, temperature, K;
Tn(x), Chebyshev polynomial of the first kind and nth order; Un(x), Chebyshev polynomial of the second kind and
nth order; ux and uy, components of the displacement vector; v(τ), velocity of motion, m/sec2; v0, scale of variation
in the velocity, m/sec2; v∗(Fo), dimensionless velocity function; x, y, z, Cartesian coordinates; xi, zeros of Cheby-
shev polynomials; y = f0(x), shape function of the die’s base in the contact region, m; y = f∗(x), dimensionless
shape function of the die’s base; α, coefficient of linear thermal expansion, K−1; α0(τ), angle of rotation of the die
relative to the z axis; α∗(Fo), dimensionless function of the angle of rotation; γ, coefficient of heat exchange be-
tween the lower plane of the layer and the ambient medium, m−1; ∆(x), kernel of the integral equation for determi-
nation of contact pressure; ∆

__
(ξ), Fourier transform of the kernel of the integral equation; δ0(τ), upsetting of the die,

m; δ∗(Fo), dimensionless function of upsetting of the die; ε, eccentricity of application of the pressing force; ε0,
computational error; η, integration variable; λ, thermal conductivity, W/(m⋅K); µ, positive roots of the transcendental
equation of the Sturm–Liouville problem; ν, Poisson coefficient; ξ, parameter of the integral Fourier transformation;
σx, σy, and σxy, components of the stress tensor, N/m2; τ, time, sec; Φ(x, y, Fo), kernel of the integral transform
of temperature; Φ

__
(ξ, y, Fo), Fourier transform of the kernel of the integral transform of temperature; Φ

__
st(ξ, y), com-

ponents (corresponding to the stationary solution of the problem) of the Fourier transform of the kernel of the inte-
gral transform of temperature; χ, parameter determining the intensity of heat generation; ψ(x, Fok), ψ1(x, Fok), and
ψ2(x, Fok), interpolation Lagrange polynomials in the expressions for contact pressure; Ω0, initial-contact region, m.
Subscripts: ef, effective value of the contact portion; cr, critical value of the contact portion; i and j, summation in-
dices; k, discrete value of Fo; m, index of eigenvalues of the Sturm–Liouville problem; st, stationary solution of the
problem; x, y, and z, components of the displacement vector and the stress tensor in the direction of the corre-
sponding Cartesian coordinates; 0, dimensional parameters of the problem.
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